ich weiss ich nerve, aber... !
bin überzeugt, bei Graphene führt in vielen Bereichen kein Weg mehr........ ???
Keine Empfehlund, nur meine Intension.! Es so viel wie sich die Institionen mit
der Erforschung von .......... befassen, das kenne ich sonst nur von Astrologen
und den Quachsalbern und Pillendrehern.
Translate: Best - Bullytrader
Quellcode:
www.sciencedaily.com/releases/2019/07/190731131122.htm
Experimente erforschen die Geheimnisse der "magischen" Winkel-Supraleiter
Datum:
31. Juli 2019
Quelle:
Princeton Universität
Zusammenfassung:
Die Physiker führten Experimente durch, um die Supraleitung in einem bahnbrechenden neuen Material zu untersuchen, das als Magic-Angle-Twisted-Graphen bekannt ist. Das Team bildete Elektronen auf der Oberfläche des Materials ab und stellte fest, dass Elektronen auf eine Weise miteinander interagieren, die erklären könnte, wie Supraleitung in diesem Material entsteht.
Aktie:
GANZE GESCHICHTE
Im Frühjahr 2018 brachte die überraschende Entdeckung der Supraleitung in einem neuen Material die Wissenschaft zum Staunen. Das Material wurde hergestellt, indem eine Kohlenstoffplatte auf die andere geschichtet und die obere in einem "magischen" Winkel gedreht wurde. Dadurch konnten Elektronen widerstandsfrei fließen. Diese Eigenschaft konnte die energieeffiziente Energieübertragung dramatisch steigern und eine Vielzahl neuer Technologien einleiten.
Neue Experimente, die in Princeton durchgeführt wurden, geben Hinweise darauf, wie dieses Material - bekannt als magisch-winkelgedrehtes Graphen - zu Supraleitung führt. In der dieswöchigen Ausgabe der Zeitschrift Nature liefern die Forscher aus Princeton eindeutige Beweise dafür, dass das supraleitende Verhalten auf starken Wechselwirkungen zwischen Elektronen beruht, und geben Einblicke in die Regeln, denen Elektronen folgen, wenn Supraleitung auftritt.
"Dies ist eines der heißesten Themen in der Physik", sagte Ali Yazdani, Professor für Physik der Klasse von 1909 und leitender Autor der Studie. "Dies ist ein unglaublich einfaches Material, nur zwei Schichten Kohlenstoff, die man übereinander klebt, und es zeigt Supraleitung."
Wie genau Supraleitung entsteht, ist ein Rätsel, um das es in Labors auf der ganzen Welt geht. Das Feld hat sogar den Namen "Twistronics".
Ein Teil der Aufregung ist, dass das Material im Vergleich zu bestehenden Supraleitern recht einfach zu untersuchen ist, da es nur zwei Schichten und nur eine Art von Atom aufweist - Kohlenstoff.
"Das Wichtigste an diesem neuen Material ist, dass es ein Spielplatz für all diese Arten von Physik ist, über die die Menschen in den letzten 40 Jahren nachgedacht haben", sagte B. Andrei Bernevig, Professor für Physik, der sich auf Theorien spezialisiert hat, um komplexe Materialien zu erklären .
Die Supraleitung in dem neuen Material scheint nach einem grundlegend anderen Mechanismus zu funktionieren als herkömmliche Supraleiter, die heute in leistungsstarken Magneten und anderen begrenzten Anwendungen eingesetzt werden. Dieses neue Material ähnelt kupferbasierten Hochtemperatursupraleitern, die in den 1980er Jahren als Cuprate bezeichnet wurden. Die Entdeckung von Cupraten führte 1987 zum Nobelpreis für Physik.
Das neue Material besteht aus zwei atomar dünnen Kohlenstoffschichten, die als Graphen bekannt sind. Auch Graphen, das 2010 Gegenstand eines Nobelpreises für Physik war, weist ein flaches Wabenmuster auf, ähnlich einem Blatt Hühnerdraht. Im März 2018 legten Pablo Jarillo-Herrero und sein Team am Massachusetts Institute of Technology eine zweite Schicht Graphen auf die erste und drehten dann das Deckblatt um den "magischen" Winkel von etwa 1,1 Grad. Dieser Winkel war von Physikern bereits vorhergesagt worden, um neue Elektronenwechselwirkungen zu verursachen, aber es war ein Schock, als MIT-Wissenschaftler Supraleitung zeigten.
Von oben gesehen ergeben die überlappenden Hühnerdrahtmuster einen als "Moiré" bekannten Flackereffekt, der entsteht, wenn zwei geometrisch regelmäßige Muster überlappen, und der einst in den Stoffen und Moden der Könige des 17. und 18. Jahrhunderts beliebt war.
Diese Moiré-Muster führen zu zutiefst neuen Eigenschaften, die in gewöhnlichen Materialien nicht zu finden sind. Die meisten gewöhnlichen Materialien fallen in ein Spektrum von isolierend bis leitend. Isolatoren fangen Elektronen in Energietaschen oder Niveaus ein, die sie an Ort und Stelle halten, während Metalle Energiezustände enthalten, die es Elektronen ermöglichen, von Atom zu Atom zu flitzen. In beiden Fällen nehmen Elektronen unterschiedliche Energieniveaus ein und interagieren nicht oder beteiligen sich nicht an kollektivem Verhalten.
In verdrehtem Graphen erzeugt die physikalische Struktur des Moiré-Gitters jedoch Energiezustände, die verhindern, dass Elektronen auseinanderstehen und sie zur Wechselwirkung zwingen. "Es schafft einen Zustand, in dem sich die Elektronen nicht gegenseitig aus dem Weg räumen können, und stattdessen müssen sie sich alle auf einem ähnlichen Energieniveau befinden. Dies ist die Grundvoraussetzung für die Entstehung stark verschränkter Zustände", sagte Yazdani.
Die von den Forschern angesprochene Frage lautete, ob diese Verstrickung einen Zusammenhang mit ihrer Supraleitung hat. Viele einfache Metalle sind auch supraleitend, aber alle bisher entdeckten Hochtemperatursupraleiter, einschließlich der Cuprate, weisen stark verschlungene Zustände auf, die durch gegenseitige Abstoßung zwischen Elektronen verursacht werden. Die starke Wechselwirkung zwischen Elektronen scheint ein Schlüssel zu sein, um eine höhere Temperatursupraleitung zu erreichen.
Um diese Frage zu beantworten, verwendeten die Princeton-Forscher ein Rastertunnelmikroskop, das so empfindlich ist, dass es einzelne Atome auf einer Oberfläche abbilden kann. Das Team scannte Proben von magisch-winklig verdrehtem Graphen, in denen sie die Anzahl der Elektronen durch Anlegen einer Spannung an eine nahegelegene Elektrode kontrollierten. Die Studie lieferte mikroskopische Informationen zu Elektron bDas Verhalten in verdrehtem zweischichtigem Graphen, während die meisten anderen Studien bisher nur die makroskopische elektrische Leitung überwacht haben.
Durch Wahl der Elektronenzahl auf sehr niedrige oder sehr hohe Konzentrationen beobachteten die Forscher, dass sich Elektronen fast unabhängig voneinander verhalten, wie dies bei einfachen Metallen der Fall wäre. Bei der kritischen Konzentration von Elektronen, bei der Supraleitung in diesem System entdeckt wurde, zeigten die Elektronen jedoch plötzlich Anzeichen einer starken Wechselwirkung und Verschränkung.
Bei der Konzentration, bei der Supraleitung auftrat, stellte das Team fest, dass die Elektronenenergieniveaus unerwartet breit wurden. Dies sind Signale, die eine starke Wechselwirkung und Verschränkung bestätigen. Trotzdem betonte Bernevig, dass diese Experimente zwar die Tür für weitere Studien öffnen, aber noch mehr Arbeit geleistet werden muss, um die Art der Verstrickung im Detail zu verstehen.
"Es gibt immer noch so viel, was wir über diese Systeme nicht wissen", sagte er. "Wir kratzen noch lange nicht einmal die Oberfläche dessen ab, was durch Experimente und theoretische Modellierung gelernt werden kann."
Mitwirkende an der Studie waren Kenji Watanabe und Takashi Taniguchi vom National Institute for Material Science in Japan; Doktorand und Erstautor Yonglong Xie, Postdoktorand Berthold Jäck, Postdoktorand Xiaomeng Liu und Doktorand Cheng-Li Chiu in Yazdanis Forschungsgruppe; und Biao Lian in Bernevigs Forschungsgruppe.
Quelle der Geschichte:
Von der Princeton University zur Verfügung gestellte Materialien. Original verfasst von Catherine Zandonella. Hinweis: Der Inhalt kann in Bezug auf Stil und Länge bearbeitet werden.
Feedback geben
Verlauf
Gespeichert
Community